Полное исследование графика функции пример. Как исследовать функцию и построить её график? Определение дополнительных точек

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos . Для ввода функций воспользуйтесь левой колонкой. Вводить можно вручную либо с помощью виртуальной клавиатуры внизу окна. Для увеличения окна с графиком можно скрыть как левую колонку, так и виртуальную клавиатуру.

Преимущества построения графиков онлайн

  • Визуальное отображение вводимых функций
  • Построение очень сложных графиков
  • Построение графиков, заданных неявно (например эллипс x^2/9+y^2/16=1)
  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta))

С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.

Одна из возможных схем исследования функции и построения се графика разлагается на следующие этапы решения задачи: 1. Область определения функции (О.О.Ф.). 2. Точки разрыва функции, их характер. Вертикальные асимптоты. 3. Четность, нечетность, периодичность функции. 4. Точки пересечения графика с осями координат. 5. Поведение функции на бесконечности. Горизонтальные и наклонные асимптоты. 6. Интервалы монотонности функции, точки максимума и минимума. 7. Направления выпуклости кривой. Точки перегиба. 8. График функции. Пример 1. Построить график функции у = 1 . (верэиора или локон Марии Аньеэи). - вся числовая ось. 2. Точек разрыва нет; вертикальных асимптот нет. 3. Функция четная: , так что график ее симметричен относительно оси Оу\ непериодическая. Из четности функции следует, что достато^о построить ее график на полупрямой х ^ О, а затем зеркально отразить его в оси Оу. 4. При х = 0 имеем Ух, так что график функции лежит в верхней полуплоскости у > 0. Схема построения графика функции Исследование функций на экстремум с помощью производных высшего порядка Вычисление корней уравнений методами хорд и касательных что график имеет горизонтальную асимптоту у = О, наклонных асимптот нет. Так то функция возрастает при и убывает, когда. Точка х = 0 - критическая. При переходе х через точку х = 0 производная у"(х) меняет знак с минуса на плюс. Следовательно, точка х = 0 - точка максимума, y(Q) = I. Результат этот достаточно очевиден: /(х) = T^IV*. Вторая производная обращается в нуль в точках х = . Исследуем точку х = 4- (далее соображение симметрии). При имеем. кривая выпукла вниз; при получаем (кривая выпукла вверх). Следовательно, точка х = = - - точка перегиба графика функции. Результаты исследования сведем в таблицу: Точка перегиба max Точка перегиба В таблице стрелка У» указывает на возрастание функции, стрелка «\» - на ее убывание. График функции изображен на рис. 33. Пример 2. Построить график функции (трезубец Ньютона). - вся числовая ось, исключая точку 2. Точка разрыва функции. Имеем так что прямая х = 0 - вертикальная асимптота. 3. Функция не является ни четной, ни нечетной [функция общего положения), непериодическая. Полагая получаем график функции пересекает ось Ох в точке (-1,0). наклонных и гори- зонтальных асимптот нет. откуда критическая точка. Вторая производная функции в точке, так что х = - точка минимума. Вторая производная обращается в ууль в точке и меняет свой знак при переходе через эту точку. Следовательно, точка - точка перегиба кривой. Для) имеем е. выпуклость кривой направлена вниз; для -I имеем. выпуклость кривой направлена вверх. Результаты исследования сводим в таблицу: Не существует Не существует Точка перегиба Не существует. Вертикальная асимптота торая производная обращается в нуль при х = е,/2. и при переходе х через эту точку у" меняет знак Следовательно, - абсцисса точки перегиба кривой. Результаты исследования сводим в таблицу: Точка перегиба. График функции изображен на рис. 37. Пример 4. Построить график функции вся числовая ось, исключая точку Точка точка разрыва 2-го рода функции. Так как Km . то прямая вертикальная асимптота графика функции. Функция общего положения, непериодическая. Полагая у = 0, имеем, откуда так что график функции пересекает ось Ох в точке Следовательно, график функции имеет наклонную асимптоту Из условия получаем - критическая точка. Вторая производная функции у" = Д > 0 всюду в области определения, в частности, в точке - точка минимума функции. 7. Поскольку, то всюду в области определения функции выпуклость ее графика направлена вниз. Результаты исследования сводим в таблицу: Не существует Не существует Не существует. х = 0 -вертикальная асимптота График функции изображен на рис. Пример 5. Построить график функции вся числовая ось. 2. Непрерывна всюду. Вертикальных асимптот нет. 3. Общего положения, непериодическая. 4. Функция обращается в нуль при 5. Таким образом, график функции имеет наклонную асимптоту Производная обращается в нуль в точке и не существует при. При переходе х через точку) производная не меняет знак, так что в точке х = 0 экстремума нет. При переходе точки х через точку производная) меняет знак с « + » на Значит в функция имеет максимум. При переходе х через точку х = 3 (х > I) производная у"(х) меняет знак т. е. в точсе х = 3 функция имеет минимум. 7. Находим вторую производную Схема построения графика функции Исследование функций на экстремум с помощью производных высшего порядка Вычисление корней уравнений методами хорд и касательных Вторая производная у"(х) не существует в точке х = 0 и при переходе х через точку х = 0 у" меняет знак с + на так что точка (0,0) кривой - точка перегиба с вертикальной касательной. В точке х = 3 перегиба графика нет. Всюду в полуплоскости х > 0 выпуклость кривой направлена вверх. Результаты исследования сводим в таблицу: Не существует Не существует Не существует Не существует Точка перегиба (0.0) с вертикальной касательной График функции представлен на рис. 39. §7. Исследование функций на экстремум с помощью производных высшего порядка Для отыскания точек максимума и минимума функций может быть использована формула Тейлора. Теорема It. Пусть функция /(х) в некоторой окрестности точки xq имеет производную п-го порядка, непрерывную в точке хо- Пусть 0. Тогда если число п - нечетное, то функция f{x) в точке х0 не имеет экстремума; когда же п - четное, то в точке х0 функция f(x) имеет максимум, если /(п)(х0) < 0, и минимум, если /. В силу определения точек максимума и минимума вопрос о том, имеет ли функция f(x) в точке х0 экстремум, сводится к тому, существует ли такое <5 > 0, что в интервале, разность - /(х0) сохраняет знак. По формуле Тейлора как по условию, то из (1) получаем 1оусловию/(п*(г) непрерывна вточкего и Ф Поэтому в силуустойчивости нака непрерывной функции существует такое, что в интервале () не меняется и совпадает со знаком /(п)(хо). Рассмотрим возможные случаи: 1) п - четное число и / Тогда I потому в силу (2) . Согласно определению это означает, что точка го есть точка минимума функции /(г). 2) п - четное и. Тогда будем иметь i вместе с этим и Поэтому точка го будет в этом:лучае точкой максимума функции /(г). 3) п - нечетное число, /- Тогда при х > х0 знак >удет совпадать со знаком /(п)(го), а при г го будет противоположным. Поэтому 1ри сколь угодно малом 0 знак разности /(г) - /(го) не будет одним и тем же 1ля всех х е (го - 6, го + £). Следовательно, в этом случае функция /(г) в точке го жстремума не имеет. Пример. Рассмотрим функции Л Легко видеть, что точка х = 0 является критической точкой обеих функций. Для функции у = х4 первая из отличных от нуля производных в точке х = 0 есть производная 4-го порядка: Таким образом, здесь п = 4 - четное и. Следовательно, в точке х = 0 функция у = х4 имеет минимум. Для функции у = х} первая из отличных от нуля в точке х = 0 производных есть производная 3-го порядка. Так что в этом случае п = 3 - нечетное, и в точке х = 0 функция у = х3 экстремума не имеет. Замечание. С помошью формулы Тейлора можно доказать следующую теорему, выражающую достаточные условия точки перегиба. "еорема 12. Пусть функция /(г) в некоторой окрестности точки г0 имеет производп-го порядка, непрерывную в точке xq. Пусть, но /(п)(*о) Ф 0- Тогда, если п - нечетное число, то точка Мо(х0, f(xо)) есть точка перегиба графика функции у = f(x). Простейший пример доставляет функция. §8. Вычисление корней уравнений методами хорд и касательных Задача состоит в нахождении действительного корня уравнения Предположим, что выполнены следующие условия: 1) функция f(x) непрерывна на отрезке [а, 6]; 2) числа /(а) и f{b) противоположны по знаку: 3) на отрезке [а, 6] существуют производные f"(x) и f"(x), сохраняющие на этом отрезке постоянный знак. Из условий 1) и 2) в силу теоремы Больцано-Коши (с. 220) следует, что функция /(ж) обращается в нуль по крайней мере в одной точке £ € (а, Ь), т. е. уравнение (1) имеет по крайней мере один действительный корень £ в интервале (а, 6). Так как в силу условия 3) производная /"(х) на [а, Ь\ сохраняет постоянный знак, то f(x) монотонна на [а, Ь] и поэтому в интервале (а, Ь) уравнение (1) имеет только один действительный корень Рассмотрим метод вычисления приближенного значения этого единственного действительного корня £ € (а, 6) уравнения (I) с любой степенью точности. Возможны четыре случая (рис. 40): 1) Рис. 40 Возьмем для определенности случай, когда f\x) > 0, f"(x) > 0 на отрезке [а, 6) (рис.41). Соединим точки А(а, /(а)) и В(Ь, f(b)) хордой А В. Это отрезок прямой, проходящей через точки А и В, уравнение которой Точка aj, в которой хорда АВ пересекает ось Ох, расположена между аи(и является лучшим приближением к чем а. Полагая в (2) у = 0, найдем Из рис. 41 нетрудно заметить, что точка а\ будет всегда расположена с той стороны от в которой знаки f(x) и f"(x) противоположны. Проведем теперь касательную к кривой у = /(х) в точке B(b, f(b)), т. е. в том конце дуги ^АВ, в котором f(x) и /"(я) имеют один и тот же знак. Это существенное условие: без его соблюдения точка пересечения касательной с осью Ох может вовсе не давать приближение к искомому корню. Точка Ь\, в которой касательная пересекает ось Ох, расположена между £ и b с той же стороны, что и 6, и является лучшим приближением к чем Ь. Касательная эта определяется уравнением Полагая в (3) у = 0, найдем Ь\: Схема построения графика функции Исследование функций на экстремум с помощью производных высшего порядка Вычисление корней уравнений методами хорд и касательных Таким образом, имеем Пусть абсолютная погрешность приближения С корня £ задана заранее. За абсолютную погрешность приближенных значений aj и 6, корня £ можно взять величину |6i - ai|. Если эта погрешность больше допустимой, то, принимая отрезок за исходный, найдем следующие приближения корня где. Продолжая этот процесс, получим две последовательности приближенных значений Последовательности {ап} и {bn} монотонные и ограниченные и, значит, имеют пределы. Пусть Можно показать, что если выполнены сформулированные выше условия 1 единственному корню уравнения / Пример. Найти корень (уравнения г2 - 1=0 на отрезке . Таким образом, выполнены все условия, обеспечивающие существование единственного корня (уравнения х2 - 1 = 0 на отрезке . и метод должен сработать. 8 нашем случае а = 0, b = 2. При п = I из (4) и (5) находим При п = 2 получаем что дает приближение к точному значению корня (с абсолютной погрешностью Упражнения Постройте графики функций: Найдите наибольшее и наименьшее значение функций на заданных отрезках: Исследуйте поведение функций в окрестностях заданных точек с помощью производных высших порядков: Ответы

Решебник Кузнецова.
III Графики

Задание 7. Провести полное исследование функции и построить её график.

        Прежде, чем Вы начнёте скачивать свои варианты, попробуйте решить задачу по образцу, приведённому ниже для варианта 3. Часть вариантов заархивированы в формате.rar

        7.3 Провести полное исследование функции и построить её график

Решение.

        1) Область определения:         или        , то есть        .
.
Таким образом:         .

        2) Точек пересечения с осью Ox нет. Действительно, уравнение         не имеет решений.
Точек пересечения с осью Oy нет, так как        .

        3) Функция ни чётная, ни нечётная. Симметрии относительно оси ординат нет. Симметрии относительно начала координат тоже нет. Так как
.
Видим, что         и        .

        4) Функция непрерывна в области определения
.

; .

; .
Следовательно, точка         является точкой разрыва второго рода (бесконечный разрыв).

5) Вертикальные асимптоты:        

Найдём наклонную асимптоту        . Здесь

;
.
Следовательно, имеем горизонтальную асимптоту: y=0 . Наклонных асимптот нет.

        6) Найдём первую производную. Первая производная:
.
И вот почему
.
Найдём стационарные точки, где производная равна нулю, то есть
.

        7) Найдём вторую производную. Вторая производная:
.
И в этом легко убедится, так как

К сожалению, не все студенты и школьники знают и любят алгебру, но готовить домашние задания, решать контрольные и сдавать экзамены приходится каждому. Особенно трудно многим даются задачи на построение графиков функций: если где-то что-то не понял, не доучил, упустил — ошибки неизбежны. Но кому же хочется получать плохие оценки?

Не желаете пополнить когорту хвостистов и двоечников? Для этого у вас есть 2 пути: засесть за учебники и восполнить пробелы знаний либо воспользоваться виртуальным помощником — сервисом автоматического построения графиков функций по заданным условиям. С решением или без. Сегодня мы познакомим вас с несколькими из них.

Лучшее, что есть в Desmos.com, это гибко настраиваемый интерфейс, интерактивность, возможность разносить результаты по таблицам и бесплатно хранить свои работы в базе ресурса без ограничений по времени. А недостаток — в том, что сервис не полностью переведен на русский язык.

Grafikus.ru

Grafikus.ru — еще один достойный внимания русскоязычный калькулятор для построения графиков. Причем он строит их не только в двухмерном, но и в трехмерном пространстве.

Вот неполный перечень заданий, с которыми этот сервис успешно справляется:

  • Черчение 2D-графиков простых функций: прямых, парабол, гипербол, тригонометрических, логарифмических и т. д.
  • Черчение 2D-графиков параметрических функций: окружностей, спиралей, фигур Лиссажу и прочих.
  • Черчение 2D-графиков в полярных координатах.
  • Построение 3D-поверхностей простых функций.
  • Построение 3D-поверхностей параметрических функций.

Готовый результат открывается в отдельном окне. Пользователю доступны опции скачивания, печати и копирования ссылки на него. Для последнего придется авторизоваться на сервисе через кнопки соцсетей.

Координатная плоскость Grafikus.ru поддерживает изменение границ осей, подписей к ним, шага сетки, а также — ширины и высоты самой плоскости и размера шрифта.

Самая сильная сторона Grafikus.ru — возможность построения 3D-графиков. В остальном он работает не хуже и не лучше, чем ресурсы-аналоги.

Onlinecharts.ru

Онлайн-помощник Onlinecharts.ru строит не графики, а диаграммы практически всех существующих видов. В том числе:

  • Линейные.
  • Столбчатые.
  • Круговые.
  • С областями.
  • Радиальные.
  • XY-графики.
  • Пузырьковые.
  • Точечные.
  • Полярные бульки.
  • Пирамиды.
  • Спидометры.
  • Столбчато-линейные.

Пользоваться ресурсом очень просто. Внешний вид диаграммы (цвет фона, сетки, линий, указателей, форма углов, шрифты, прозрачность, спецэффекты и т. д.) полностью определяется пользователем. Данные для построения можно ввести как вручную, так и импортировать из таблицы CSV-файла, хранимого на компьютере. Готовый результат доступен для скачивания на ПК в виде картинки, PDF-, CSV- или SVG-файлов, а также для сохранения онлайн на фотохостинге ImageShack.Us или в личном кабинете Onlinecharts.ru. Первый вариант могут использовать все, второй — только зарегистрированные.

Для полного исследования функции и построения её графика рекомендуется использовать следующую схему:

1) найти область определения функции;

2) найти точки разрыва функции и вертикальные асимптоты (если они существуют);

3) исследовать поведение функции в бесконечности, найти горизонтальные и наклонные асимптоты;

4) исследовать функцию на чётность (нечётность) и на периодичность (для тригонометрических функций);

5) найти экстремумы и интервалы монотонности функции;

6) определить интервалы выпуклости и точки перегиба;

7) найти точки пересечения с осями координат, если возможно и некоторые дополнительные точки, уточняющие график.

Исследование функции проводится одновременно с построением её графика.

Пример 9 Исследовать функцию и построить график.

1. Область определения: ;

2. Функция терпит разрывв точках
,
;

Исследуем функцию на наличие вертикальных асимптот.

;
,
─ вертикальная асимптота.

;
,
─ вертикальная асимптота.

3. Исследуем функцию на наличие наклонных и горизонтальных асимптот.

Прямая
─ наклонная асимптота, если
,
.

,
.

Прямая
─ горизонтальная асимптота.

4. Функция является четной т.к.
. Чётность функции указывает на симметричность графика относительно оси ординат.

5. Найдём интервалы монотонности и экстремумы функции.

Найдём критические точки, т.е. точки в которых производная равна 0 или не существует:
;
. Имеем три точки
;

. Эти точки разбивают всю действительную ось на четыре промежутка. Определим знакина каждом из них.

На интервалах (-∞; -1) и (-1; 0) функция возрастает, на интервалах (0; 1) и (1 ; +∞) ─ убывает. При переходе через точку
производная меняет знак с плюса на минус, следовательно, в этой точке функция имеет максимум
.

6. Найдём интервалы выпуклости, точки перегиба.

Найдём точки, в которых равна 0, или не существует.

не имеет действительных корней.
,
,

Точки
и
разбивают действительную ось на три интервала. Определим знак на каждом промежутке.

Таким образом, кривая на интервалах
и
выпуклая вниз, на интервале (-1;1) выпуклая вверх; точек перегиба нет, т. к. функция в точках
и
не определена.

7. Найдем точки пересечения с осями.

С осью
график функции пересекается в точке (0; -1), а с осью
график не пересекается, т.к. числитель данной функции не имеет действительных корней.

График заданной функции изображён на рисунке 1.

Рисунок 1 ─ График функции

Применение понятия производной в экономике. Эластичность функции

Для исследования экономических процессов и решения других прикладных задач часто используется понятие эластичности функции.

Определение. Эластичностью функции
называется предел отношения относительного приращения функциик относительному приращению переменнойпри
, . (VII)

Эластичность функции показывает приближённо, на сколько процентов изменится функция
при изменении независимой переменнойна 1%.

Эластичность функции применяется при анализе спроса и потребления. Если эластичность спроса (по абсолютной величине)
, то спрос считают эластичным, если
─ нейтральным, если
─ неэластичным относительно цены (или дохода).

Пример 10 Рассчитать эластичность функции
и найти значение показателя эластичности для = 3.

Решение: по формуле (VII) эластичность функции:

Пусть х=3, тогда
.Это означает, что если независимая переменная возрастёт на 1%, то значение зависимой переменной увеличится на 1,42 %.

Пример 11 Пусть функция спроса относительно ценыимеет вид
, где─ постоянный коэффициент. Найти значение показателя эластичности функции спроса при цене х = 3 ден. ед.

Решение: рассчитаем эластичность функции спроса по формуле (VII)

Полагая
ден.ед., получим
. Это означает, что при цене
ден.ед. повышение цены на 1% вызовет снижение спроса на 6%, т.е. спрос эластичен.

Похожие статьи

  • Как узнать свой КПД в World Of Tanks?

    КПД в World of Tanks - это коэффициент полезного действия игрока, польза которую вы принесли команде за бой. В расчет КПД входит нанесенный дамаг, убитая техника, засветы, помощь команде. Как поднять КПД в World of Tanks? В этой статье мы...

  • Теплоход сура. И двигается, и рулит

    В 19 веке и первой половине двадцатого столетия наши реки бороздили колесные пассажирские и буксирные суда. Этим летом в первый рейс по Волге отправится современный колесник. Однако это вовсе не дань моде на ретро. Небольшой по размерам и...

  • Крымский мост: кто на самом деле топит украинские порты?

    12:29 — REGNUM ИА REGNUM продолжает знакомить читателей с объектами инфраструктуры Украины. А ключевой элемент инфраструктуры любой страны, имеющей выход к морю, — порты. Инфраструктуры не только транспортной, но и экономической,...

  • Интернет- мешает нормально жить

    Современные технологии дают возможность развивать скорость до одного гигабайта бытовым пользователям. Но медленное соединение не позволяет в полной мере наслаждаться всеми преимуществами информационного века. Интернет может тормозить по...

  • Медленно работает интернет

    Интернет на вашем мобильном более уязвим к внешним условиям, чем ноутбуки и компьютеры. Сигнал во многом зависит от зон покрытия 2G и 3G, Wi-Fi точек, мощности станций-трансляторов, погодных условий и вашей личной кармы. Очень часто...

  • InstallPack скачать бесплатно русская версия

    Приложение InstallPack для быстрой и удобной загрузки на пк нескольких программ одновременно. Позволяет установить самые свежие версии ПО от разных разработчиков, минуя запуск браузера. Инстал Пак существенно упрощает поиск и загрузку...