Как вычислить обратную матрицу. Алгоритм вычисления обратной матрицы

Определение 1: матрица называется вырожденной, если её определитель равен нулю.

Определение 2: матрица называется невырожденной, если её определитель не равен нулю.

Матрица "A" называется обратной матрицей , если выполняется условие A*A-1 = A-1 *A = E (единичной матрице).

Квадратная матрица обратима только в том случае, когда она является невырожденной.

Схема вычисления обратной матрицы:

1) Вычислить определитель матрицы "A", если A = 0, то обратной матрицы не существует.

2) Найти все алгебраические дополнения матрицы "A".

3) Составить матрицу из алгебраических дополнений (Aij )

4) Транспонировать матрицу из алгебраических дополнений (Aij )T

5) Умножить транспонированную матрицу на число, обратное определителю данной матрицы.

6) Выполнить проверку:

На первый взгляд может показаться, что это сложно, но на самом деле всё очень просто. Все решения основаны на простых арифметических действиях, главное при решении не путаться со знаками "-" и "+", и не терять их.

А теперь давайте вместе с Вами решим практическое задание, вычислив обратную матрицу.

Задание: найти обратную матрицу "A", представленную на картинке ниже:

Решаем всё в точности так, как это указано в план-схеме вычисления обратной матрицы.

1. Первое, что нужно сделать, это найти определитель матрицы "A":

Пояснение:

Мы упростили наш определитель, воспользовавшись его основными функциями. Во первых, мы прибавили ко 2 и 3 строке элементы первой строки, умноженные на одно число.

Во-вторых, мы поменяли 2 и 3 столбец определителя, и по его свойствам поменяли знак перед ним.

В-третьих, мы вынесли общий множитель (-1) второй строки, тем самым, снова поменяв знак, и он стал положительным. Также мы упростили 3 строку также, как в самом начале примера.

У нас получилась треугольный определитель, у которого элементы ниже диагонали равны нулю, и по 7 свойству он равен произведению элементов диагонали. В итоге мы получили A = 26, следовательно обратная матрица существует.

А11 = 1*(3+1) = 4

А12 = -1*(9+2) = -11

А13 = 1*1 = 1

А21 = -1*(-6) = 6

А22 = 1*(3-0) = 3

А23 = -1*(1+4) = -5

А31 = 1*2 = 2

А32 = -1*(-1) = -1

А33 = 1+(1+6) = 7

3. Следующий шаг - составление матрицы из получившихся дополнений:

5. Умножаем эту матрицу на число, обратное определителю, то есть на 1/26:

6. Ну а теперь нам просто нужно выполнить проверку:

В ходе проверки мы получили единичную матрицу, следовательно, решение было выполнено абсолютно верно.

2 способ вычисления обратной матрицы.

1. Элементарное преобразование матриц

2. Обратная матрица через элементарный преобразователь.

Элементарное преобразование матриц включает:

1. Умножение строки на число, не равное нулю.

2. Прибавление к любой строке другой строки, умноженной на число.

3. Перемена местами строк матрицы.

4. Применяя цепочку элементарных преобразований, получаем другую матрицу.

А-1 = ?

1. (A|E) ~ (E|A-1 )

2. A-1 * A = E

Рассмотрим это на практическом примере с действительными числами.

Задание: Найти обратную матрицу.

Решение:

Выполним проверку:

Небольшое разъяснение по решению:

Сперва мы переставили 1 и 2 строку матрицы, затем умножили первую строку на (-1).

После этого умножили первую строку на (-2) и сложили со второй строкой матрицы. После чего умножили 2 строку на 1/4.

Заключительным этапом преобразований стало умножение второй строки на 2 и прибавлением с первой. В результате слева у нас получилась единичная матрица, следовательно, обратная матрица - это матрица справа.

После проверки мы убедились в правильности решения.

Как вы видите, вычисление обратной матрицы - это очень просто.

В заключении данной лекции хотелось бы также уделить немного времени свойствам такой матрицы.

В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

Определение 1

Метод обратной матрицы - это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

Пример 1

Найти решение системы n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

Матричный вид записи : А × X = B

где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n - матрица системы.

X = x 1 x 2 ⋮ x n - столбец неизвестных,

B = b 1 b 2 ⋮ b n - столбец свободных коэффициентов.

Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A - 1:

A - 1 × A × X = A - 1 × B .

Так как А - 1 × А = Е, то Е × X = А - 1 × В или X = А - 1 × В.

Замечание

Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю. Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А.

В том случае, если d e t A н е р а в е н н у л ю, у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

Пример решения системы линейных уравнений с помощью метода обратной матрицы

Пример 2

Решаем СЛАУ методом обратной матрицы:

2 x 1 - 4 x 2 + 3 x 3 = 1 x 1 - 2 x 2 + 4 x 3 = 3 3 x 1 - x 2 + 5 x 3 = 2

Как решить?

  • Записываем систему в виде матричного уравнения А X = B , где

А = 2 - 4 3 1 - 2 4 3 - 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

  • Выражаем из этого уравнения X:
  • Находим определитель матрицы А:

d e t A = 2 - 4 3 1 - 2 4 3 - 1 5 = 2 × (- 2) × 5 + 3 × (- 4) × 4 + 3 × (- 1) × 1 - 3 × (- 2) × 3 - - 1 × (- 4) × 5 - 2 × 4 - (- 1) = - 20 - 48 - 3 + 18 + 20 + 8 = - 25

d e t А не равняется 0, следовательно для этой системы подходит метод решения обратной матрицей.

  • Находим обратную матрицу А - 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А:

А 11 = (- 1) (1 + 1) - 2 4 - 1 5 = - 10 + 4 = - 6 ,

А 12 = (- 1) 1 + 2 1 4 3 5 = - (5 - 12) = 7 ,

А 13 = (- 1) 1 + 3 1 - 2 3 - 1 = - 1 + 6 = 5 ,

А 21 = (- 1) 2 + 1 - 4 3 - 1 5 = - (- 20 + 3) = 17 ,

А 22 = (- 1) 2 + 2 2 3 3 5 - 10 - 9 = 1 ,

А 23 = (- 1) 2 + 3 2 - 4 3 - 1 = - (- 2 + 12) = - 10 ,

А 31 = (- 1) 3 + 1 - 4 3 - 2 4 = - 16 + 6 = - 10 ,

А 32 = (- 1) 3 + 2 2 3 1 4 = - (8 - 3) = - 5 ,

А 33 = (- 1) 3 + 3 2 - 4 1 - 2 = - 4 + 4 = 0 .

  • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А:

А * = - 6 7 5 17 1 - 10 - 10 - 5 0

  • Записываем обратную матрицу согласно формуле:

A - 1 = 1 d e t A (A *) T: А - 1 = - 1 25 - 6 17 - 10 7 1 - 5 5 - 10 0 ,

  • Умножаем обратную матрицу А - 1 на столбец свободных членов В и получаем решение системы:

X = A - 1 × B = - 1 25 - 6 17 - 10 7 1 - 5 5 - 10 0 1 3 2 = - 1 25 - 6 + 51 - 20 7 + 3 - 10 5 - 30 + 0 = - 1 0 1

Ответ : x 1 = - 1 ; x 2 = 0 ; x 3 = 1

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Для любой невырожденной матрицы А существует и притом единственная матрица A -1 такая, что

A*A -1 =A -1 *A = E,

где E — единичная матрица тех же порядков, что и А. Матрица A -1 называется обратной к матрице A.

Если кто-то забыл, в единичной матрице, кроме диагонали, заполненной единицами, все остальные позиции заполнены нулями, пример единичной матрицы:

Нахождение обратной матрицы методом присоединённой матрицы

Обратная матрица определяется формулой:

где A ij - элементов a ij .

Т.е. для вычисления обратной матрицы, нужно вычислить определитель этой матрицы. Затем найти алгебраические дополнения для всех её элементов и составить из них новую матрицу. Далее нужно транспортировать эту матрицу. И каждый элемент новой матрицы поделить на определитель исходной матрицы.

Рассмотрим несколько примеров.

Найти A -1 для матрицы

Р е ш е н и е. Найдём A -1 методом присоединённой матрицы. Имеем det A = 2. Найдём алгебраические дополнения элементов матрицы A. В данном случае алгебраическими дополнениями элементов матрицы будут соответствующие элементы самой матрицы, взятые со знаком в соответствии с формулой

Имеем A 11 = 3, A 12 = -4, A 21 = -1, A 22 = 2. Образуем присоединённую матрицу

Транспортируем матрицу A*:

Находим обратную матрицу по формуле:

Получаем:

Методом присоединённой матрицы найти A -1 , если

Р е ш е н и е. Прежде всего вычисляем определитесь данной матрицы, чтобы убедиться в существовании обратной матрицы. Имеем

Здесь мы прибавили к элементам второй строки элементы третьей строки, умноженные предварительно на (-1), а затем раскрыли определитель по второй строке. Так как определитесь данной матрицы отличен от нуля, то обратная к ней матрица существует. Для построения присоединённой матрицы находим алгебраические дополнения элементов данной матрицы. Имеем

В соответствии с формулой

транспортируем матрицу A*:

Тогда по формуле

Нахождение обратной матрицы методом элементарных преобразований

Кроме метода нахождения обратной матрицы, вытекающего из формулы (метод присоединенной матрицы), существует метод нахождения обратной матрицы, называемый методом элементарных преобразований.

Элементарные преобразования матрицы

Элементарными преобразованиями матрицы называются следующие преобразования:

1) перестановка строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), предварительно умноженных на некоторое число.

Для нахождения матрицы A -1 построим прямоугольную матрицу В = (А|Е) порядков (n; 2n), приписывая к матрице А справа единичную матрицу Е через разделительную черту:

Рассмотрим пример.

Методом элементарных преобразований найти A -1 , если

Р е ш е н и е. Образуем матрицу B:

Обозначим строки матрицы B через α 1 , α 2 , α 3 . Произведём над строками матрицы B следующие преобразования.

Обратная матрица для данной это такая матрица, умножение исходной на которую дает единичную матрицу: Обязательным и достаточным условием наличия обратной матрицы является неравенство нулю детерминанта исходной (что в свою очередь подразумевает, что матрица должна быть квадратная). Если же определитель матрицы равняется нулю, то ее называют вырожденной и такая матрица не имеет обратной. В высшей математике обратные матрицы имеют важное значение и применяются для решения ряда задач. Например, на нахождении обратной матрицы построен матричный метод решения систем уравнений. Наш сервис сайт позволяет вычислять обратную матрицу онлайн двумя методами: методом Гаусса-Жордана и с помощью матрицы алгебраических дополнений. Прервый подразумевает большое количество элементарных преобразований внутри матрицы, второй - вычисление детерминанта и алгебраических дополнений ко всем элементам. Для вычисления определителя матрицы онлайн вы можете воспользоваться другим нашим сервисом - Вычисление детерминанта матрицы онлайн

.

Найти обратную матрицу на сайт

сайт позволяет находить обратную матрицу онлайн быстро и бесплатно. На сайте произвордятся вычисления нашим сервисом и выдается результат с подробным решением по нахождению обратной матрицы . Сервер всегда выдает только точный и верный ответ. В задачах по определению обратной матрицы онлайн , необходимо, чтобы определитель матрицы был отличным от нуля, иначе сайт сообщит о невозможности найти обратную матрицу ввиду равенства нулю определителя исходной матрицы. Задача по нахождению обратной матрицы встречается во многих разделах математики, являясь одним из самых базовых понятий алгебры и математическим инструментом в прикладных задачах. Самостоятельное определение обратной матрицы требует значительных усилий, много времени, вычислений и большой внимательности, чтобы не допустить описку или мелкую ошибку в вычислениях. Поэтому наш сервис по нахождению обратной матрицы онлайн значительно облегчит вам задачу и станет незаменимым инструментом для решения математических задач. Даже если вы находите обратную матрицу самостоятельно, мы рекомендуем проверить ваше решение на нашем сервере. Ввведите вашу исходную матрицу у нас на Вычисление обратной матрицы онлайн и сверьте ваш ответ. Наша система никогда не ошибается и находит обратную матрицу заданной размерности в режиме онлайн мгновенно! На сайте сайт допускаются символьные записи в элементах матриц , в этом случае обратная матрица онлайн будет представлена в общем символьном виде.

Пусть имеется квадратная матрица n-го порядка

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е — единичная матрица n-го порядка.

Единичная матрица — такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, — единицы, а остальные — нули, например:

Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.

Теорема условия существования обратной матрицы

Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.

Матрица А = (А1, А2,...А n) называется невырожденной , если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.

Алгоритм нахождения обратной матрицы

  1. Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.
  2. Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.
  3. Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.
  4. Записать обратную матрицу А -1 , которая находится в последней таблице под матрицей Е исходной таблицы.
Пример 1

Для матрицы А найти обратную матрицу А -1

Решение: Записываем матрицу А и справа приписываем единичную матрицу Е. Используя преобразования Жордана, приводим матрицу А к единичной матрице Е. Вычисления приведены в таблице 31.1.

Проверим правильность вычислений умножением исходной матрицы А и обратной матрицы А -1 .

В результате умножения матриц получилась единичная матрица. Следовательно, вычисления произведены правильно.

Ответ:

Решение матричных уравнений

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С — задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

Аналогично решаются другие уравнения.

Пример 2

Решить уравнение АХ = В, если

Решение : Так как обратная матрица равняется (см. пример 1)

Матричный метод в экономическом анализе

Наряду с другими в находят применение также матричные методы . Эти методы базируются на линейной и векторно-матричной алгебре. Такие методы применяются для целей анализа сложных и многомерных экономических явлений. Чаще всего эти методы используются при необходимости сравнительной оценки функционирования организаций и их структурных подразделений.

В процессе применения матричных методов анализа можно выделить несколько этапов.

На первом этапе осуществляется формирование системы экономических показателей и на ее основе составляется матрица исходных данных , которая представляет собой таблицу, в которой по ее отдельным строкам показываются номера систем (i = 1,2,....,n) , а по вертикальным графам — номера показателей (j = 1,2,....,m) .

На втором этапе по каждой вертикальной графе выявляется наибольшее из имеющихся значений показателей, которое и принимается за единицу.

После этого все суммы, отраженные в данной графе делят на наибольшее значение и формируется матрица стандартизированных коэффициентов .

На третьем этапе все составные части матрицы возводят в квадрат. Если они имеют различную значимость, то каждому показателю матрицы присваивается определенный весовой коэффициент k . Величина последнего определяется экспертным путем.

На последнем, четвертом этапе найденные величины рейтинговых оценок R j группируются в порядке их увеличения или уменьшения.

Изложенные матричные методы следует использовать, например, при сравнительном анализе различных инвестиционных проектов, а также при оценке других экономических показателей деятельности организаций.

Похожие статьи

  • Как узнать свой КПД в World Of Tanks?

    КПД в World of Tanks - это коэффициент полезного действия игрока, польза которую вы принесли команде за бой. В расчет КПД входит нанесенный дамаг, убитая техника, засветы, помощь команде. Как поднять КПД в World of Tanks? В этой статье мы...

  • Теплоход сура. И двигается, и рулит

    В 19 веке и первой половине двадцатого столетия наши реки бороздили колесные пассажирские и буксирные суда. Этим летом в первый рейс по Волге отправится современный колесник. Однако это вовсе не дань моде на ретро. Небольшой по размерам и...

  • Крымский мост: кто на самом деле топит украинские порты?

    12:29 — REGNUM ИА REGNUM продолжает знакомить читателей с объектами инфраструктуры Украины. А ключевой элемент инфраструктуры любой страны, имеющей выход к морю, — порты. Инфраструктуры не только транспортной, но и экономической,...

  • Интернет- мешает нормально жить

    Современные технологии дают возможность развивать скорость до одного гигабайта бытовым пользователям. Но медленное соединение не позволяет в полной мере наслаждаться всеми преимуществами информационного века. Интернет может тормозить по...

  • Медленно работает интернет

    Интернет на вашем мобильном более уязвим к внешним условиям, чем ноутбуки и компьютеры. Сигнал во многом зависит от зон покрытия 2G и 3G, Wi-Fi точек, мощности станций-трансляторов, погодных условий и вашей личной кармы. Очень часто...

  • InstallPack скачать бесплатно русская версия

    Приложение InstallPack для быстрой и удобной загрузки на пк нескольких программ одновременно. Позволяет установить самые свежие версии ПО от разных разработчиков, минуя запуск браузера. Инстал Пак существенно упрощает поиск и загрузку...